
Thus, the propagation of elastic waves in a periodically laminated, saturated, porous 
medium has several important features which can be linked to the motion of the fluid relative 
to the skeleton at the boundaries between the layers. These features cannot be accounted 
for in the theory of visco-elastic media. They can be best accounted for within the frame- 
work of the Frenkel-Biot model. 
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PROPAGATION OF COMPRESSION WAVES IN A 

POROUS FLUID-SATURATED MEDIUM 

V. E. Dontsov, V. V. Kuznetsov, 
and V. E. Nakoryakov 

UDC 532.546 

Theoretical analysis of the propagation of compression waves in porous media saturated 
by a fluid [1-3] has shown that the main mechanism determining the evolution of the waves 
is interphase friction at the boundary of the fluid and the solid skeleton. It was found 
in [4-7] that one longitudinal wave is propagated in saturated porous media, while [6] 
presented test data on the decay of high-frequency acoustic waves which were generalized 
well by calculations performed in accordance with [i]. The authors of [8, 9], examining 
ultrasonic waves in consolidated porous media, were the first to experimentally detect the 
existence of two types of longitudinal waves - "fast" and "slow." The goal of the present 
study is to obtain experimental data on the dynamics of a compression wave in porous media 
saturated with fluid within a broad range of parameters of the waves and medium. We also 
want to generalize this data on the basis of calculations performed in accordance with well- 
known models. 

Ignoring convective terms for the liquid and solid phases, the system of equations 
for the strains of the solid skeleton e I and the fluid e2 in longitudinal waves has the 
following form in the unidimensional case [i, i0] 
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Here; T V is the force of interphase friction per unit volume of the medium; 0z k 00t ; 

= m(e I -- e2) ; p = p1(l -- m) + p2m; Pl and P2 are the density of the solid and fluid phases; 
m is porosity; k 0 is permeability; v is the kinematic viscosity of the fluid; a is the added 
mass of the fluid. The coefficients H, M, and C are functions of the bulk modulus K B and 
shear modulus D of elasticity of the porous skeleton, the bulk modulus of elasticity of the 
fluid K 2 and the material of the solid skeleton KI, and porosity: H = K B + 4D/3 + (K I - 

KB)2/(D - KB), C = Kz(K~ - KB)/(D - KB), M = K~/(D - KB), D = K~(l + m(K~/K 2 - i)). 

System (i) was obtained for low-frequency waves with the assumption that the process 
is quasi-steady, i.e., assuming that Darcy's law is valid in the flow of the fluid in the 
porous medium after the wave. For high-frequency compression waves, it is necessary to con- 
sider the process of establishment of the profile of fluid velocity in the porous medium. 
This leads to dependence of the force of phase interaction on the frequency of the process 
m. In this case also, for harmonic waves, the dissipative term in (i) [i, 6, i0] 

0 T v / O x  = f (o) (~p~/ko)O~/Ot ,  ( 2 ) 
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The  f u n c t i o n s  b e r  a n d  b e i  a r e  t h e  r e a l  a n d  i m a g i n a r y  p a r t s  o f  t h e  K e l v i n  f u n c t i o n ,  r e s p e c "  
tively. 

Using the relationship between the strain of the solid skeleton and the fluid on the 
one hand, and the pressure in the fluid p, and the first component of the tensor of effective 
stresses of the solid skeleton o f On the other hand [i, 2], 

p = M ~  - -  Ce~, ~ = ( H  - -  C)e~ - -  (C - -  M ) ~ ,  ( 3 )  

we transform system (i) as follows: 
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and the relationship between the amplitudes of the pressures Pnl,2 and the effective stress 
anl,2 (the subscript 1 pertains to the first, "fast" wave, while the subscript 2 pertains to 
the second, "slow" wave) 

) on~,~=~\~/ -~Z-:/l\\-~/ +M~--C ~ M~--: " 

It follows from (5) that two types of waves having different velocities may propagate 
in one direction in a fluid-saturated porous medium. Here, a minus sign in (5) corres- 
ponds to a wave with the wave ntunber kl, while a plus sign corresponds to a wave with the 
wave number k 2. Figures la and b show characteristic relations for wave velocity cr = 
Re(u/k) and the attenuation factor Nr = Im(k(m)). 

Calculations were performed for parameters of the consolidated porous medium corres- 
ponding to the test conditions; lines i and 2 correspond to the velocity and attenuation 
of the first wave in a porous medium saturated with gasoline and oil, respectively, while 
lines 3 and 4 correspond to the second wave. It can be seen that the first wave propagates 
without dispersion or attentuation, while the second wave is strongly attenuated. For the 
first wave, the character of its evolution may be significantly affected by viscoelastic 
forces caused by the expulsion of fluid near points of contact of grains when they are de- 
formed [i0]. Allowance for these forces leads to dependence of the effective stresses on 
the strain rate o f = (H - C)e I - (C - M)~ + Bvp23el/~t, which for harmonic waves is equi- 
valent to introduction of the operator H* into Eq. (3) and system (I): 

H* = H q- i0,~vp~. (7) 

Line 5 in Fig. ib shows the results of calculation of attentuation of the first wave at 
= 4"10 ~ with allowance for the occurrence of viscoelastic forces in the case of a porous 

medium saturated with oil. 

With allowance for (5), the solution of system (4) has the form 

L L 

p(x, t)= ~ p~,lexpi(~t--kl(~n)x ) q- ~. pn:expi(~nt--k~(~n) x), (8 )  
n~O n ~ O  

L L 

o ! (x, t) ---- ]~] an: 'exp i (o~t - -  k I ( ~ )  x) + ~ an,2 exp i (~$  - -  k~ (on) ~ 
n = O  n ~ O  

where Pn,1 and On, I pertain to the wave with kl, and Pn,2 and On, 2 pertain to the wave with k 2. 
They are determined from the expansion of the initial signal into a discrete Fourier series 

L L 

p (0, t) = ~] (Pn:  q- Pn,2) exp (iont), o / (0, t) = ~], (an,1 if- qn,2) exp (i~nt) 
~ 0  n ~ O  

w i t h  t h e  u s e  o f  Eq. ( 6 ) .  

We will examine two types of boundary conditions in a fluid-saturated porous medium 
[3]: "fluid piston" - we assign the pressure in the fluid at the boundary with the porous 
medium p(O, t) = Ap0(t), and the effective stress of(o, t) = O; "impermeable piston" - we 
assign the first component of the stress tensor o(0, t) = of(o, t) - p(O, t) = Ao0(t) and 
equate the strains of the solid skeleton and fluid ez =:e2. 

With allowance for the above boundary conditions, we realized this method of solving 
system (4) on a computer. The results of the computations are shown below in comparison 
with experimental results. 

The experiments were conducted on a unit of the "shock tube" type. On the first unit, 
the working section was a vertical thick-walled steel tube with an inside diameter of 10 -2 
m and a length of 0.54 m. This tube was filled with the porous medium. A fluoroplastic 
film 3"10 "5 m thick was located between the porous medium and the wall of the tube to prevent 
friction of the medium against the wall of the working section from affecting the propagation 
of the compression wave. The porous medium was a bed of sintered organic glass beads 
(0.2-0.25)-10 -3 m in diameter. The beads were sintered directly in the working section. 
Before saturation with the fluid, the working section was evacuated with a force pump. This 
prevented the formation of air bubbles in the porous medium when it was filled with the 
fluid. In the experiments, we studied the propagation of two types of waves - stepped and 
bell-shaped. Profiles of stepped compression waves were obtained by the rupture of a dia- 
phragm separating the high-pressure chamber from the working section. To realize the pre- 
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scribed boundary conditions ("fluid" or "impermeable" pistons), bell-shaped pressure pulses 
were created by the impact of a piston against a thin layer of fluid on top of the porous 
medium or directly in the medium itself. 

The second experimental unit had a working section in the form of a vertical thick- 
walled steel tube with an inside diameter of 53"10 -3 m. The tube was filled with a porous 
medium consisting of bulk bank sand with a particle diameter of (0.1-0.5).10 -3 m. Clay 
and organic impurities were removed from the sand before it was used in the tests. The method 
of moist tamping was used to fill the working section with the medium. The sand was slowly 
poured into a container with fluid and carefully mixed toremove air bubbles. The fluid- 
saturated sand was then poured into the working section, tamped with a vibrating tool, and 
constricted by highlypermeable porous plates. Given this method of medium preparation, 
porosity remains constant during the tests. The bell-shaped pressure pulses were created 
by the impact of a piston against the movable bottom of the fluid-filled transitional cham- 
ber. The piston was accelerated in an air shock wave. The pressure pulse formed in the 
transitional section propagated into the working section. The duration and amplitude of 
the initial pulse were varied by changing the weight of the piston and the pressure in the 
air shock wave. The resulting ranges of the parameters were as follows: intensity Ap0 = 
2-25 MPa; duration 6 = (40-100)'10 -6 sec (6 is the characteristic width of the signal at 
the level 0.37 Ap0). The bulk modulus of elasticity of the skeleton K B was increased by the 
constriction of the porous skeleton by the external load applied to the porous plate. To 
ensure a uniform load on the skeleton over its entire length, the working section was sub- 
jected to vibration during the constriction. The value of K B was determined from the velocity 
of the compression wave in a dry bed with allowance for the relationship between the shear 
modulus of the solid skeleton p and K B [B]; ~ = I.IK B. The bulk modulus of the fluid was 
calculated from the velocity of a low-frequency compression wave measured in loose (K B << 
K 2) sand saturated with fluid. Here, we used Wood's formula v B = ((m/K 2 + (I - m)/K1)p) -I/2. 

Piezoelectric pressure gauges, with sensitive elements 2"10 -3 m in diameter, were 
placedalong the working section. They did not touch the skeleton of the porous medium and 
measured the pressure profiles in the fluid phase. Signals from the gauges, sent through 
high-resistance amplifiers, were recorded on an oscillograph. 

Figure 2 shows test data and calculated results (lines i and 2) on the evolution of 
the stepped pressure profile with an amplitude Ap0 in a porous medium of organic glass beads 
saturated with gasoline and oil (a, b) at m = 0.35, k 0 = 18"10 -12 m 2, K B = 1.2 • 10 s N/m, 

= 0.41 KB, ~ = 3.0; oil - p= = 0.86"10 ~ kg/m 3, v = 25.2"i0 -G m2/sec, K 2 = 1.51"10 e N/m2; 
gasoline - P2 = 0-75"10~ kg/m3, v = 0.7"i0-~ m2/sec, K2 = 0"86"i0s N/m=" It was found that 
two types of longitudinal waves - "fast" and "slow" - are propagated in a consolidated porous 
medium. It is not possible to distinguish between the waves at short distances into the 
medium (x = 0.015 m). However, the velocity of the "fast" wave v z is considerably greater 
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than that of the "slow" wave v2, and at larger distances (x = 0.136 m) the waves can be 
separated (Fig. 2a). In the case of high fluid viscosities, dissipative processes 
greatly reduce the amplitude of the slow wave, and the latter cannot be detected after the 
waves separate. The fast wave, meanwhile, continues to propagate without attenuation 
(Fig. 2b). This leads to a marked change in the amplitude of the wave as a whole only in 
the region where the fast and slow waves separate. This region is located a short distance 
from the point of entry of the initial signal into the medium. The results of calculations 
at x = 0.015 and 0.136 m correspond to the overall pressure profile, while at x = 0 the re- 
sults also give the initial pressure profile of the fast wave, with the amplitude APt0. 

Figure 3 shows profiles of bell-shaped compression waves and compares these profiles 
with results calculated (lines 1 and 2) for different distances from the point of entry of 
a porous medium saturated with gasoline. Here, the parameters of the medium correspond 
to the values in Fig. 2a. The pressure profiles in Figs. 3a and b reflect the different 
methods of wave generation - "impermeable" and "fluid" pistons. The calculations show that 
with an impermeable piston, the slow wave nearly fails to form, while in the case of a fluid 
piston, the amplitude of the slow wave is comparable to the amplitude of the fast wave. The 
same result was obtained in the experiments. As for the stepped pressure profile, the ampli- 
tude of the fast wave in Fig. 3 undergoes almost no attenuation. This is due to the fact 
that the displacements of the solid skeleton and the fluid in the fast wave are close in 
value and are in phase, while their phases are opposite in the slow wave [I]. The best 
agreement between the test data and the calculated wave velocities for all of the experiments 
is seen at ~ = 3. This value of ~ lies within the range ~ = 2-3 obtained in [5] for highly 
constricted bulk glass beads; the quantity ~ has a significant effect on the velocity and 
rate of decay of the slow wave, but it has almost no effect on the parameters of the fast 
wave. It should be noted that in the calculations, the initial signal of bell-shaped form 
was approximated by the relation Ap0(t) = &p0exp( - (2t/~) 2) (6 is the characteristic length 
of the signal). 

Figure 4 shows test data on the decay of the amplitudes of the fast (a) and slow (b) 
waves for different wave periods. Here, Apl,2 represents the amplitudes of the waves at a 
distance of 0.146 m from the point of entry to the medium, a: points 1 - porous medium, 
saturated with gasoline; 2 - kerosene; 3 - oil; b) i, 2 - gasoline; 3, 4 - kerosene, with 
the wave amplitudes: i, 3 - AP20 = (0.1-0.3) MPa; 2, 4 - Ap~0 = (0.6-0.8) MPa. For kerosene, 
P2 = 0.8"103 kg/m3, v = 177"10 -6 m2/sec, K 2 = 1.2-i0 s N/m 2. 

In the investigated ranges of wave periods and medium parameters, the fast wave under- 
goes almost no attenuation. This finding is consistent with the calculated data (line 4). 

The amplitude of the slow wave at the point of entry to the medium Ap20 was calcu- 
l'ted from the measured amplitude of the fast wave in the same experiment by using the 
theoretical value for the ratio of the amplitudes of the fast and slow waves at the entry 
point. The calculated curves 5 for gasoline and 6 for kerosene satisfactorily generalize 
the test data for waves of an amplitude less than 0.3 MPa. At larger amplitudes, greater 
attenuation is seen for gasoline in the experiments than in the calculations. This is evi- 
dently due to an increase in interphase friction with an increase in Re. Thus, for ampli- 
tudes of (0.6-0.8) MPa, Re = Aumd/v has a value of 30-40 in the second wave. With allowance 
for a binomial law, this gives an increase in interphase friction of 40% in the porous medium. 
The value of Re was determined from the relative velocity of the solid skeleton and the fluid 
in the wave Au and the diameter of the beads d; Au was evaluated from the relation Au = v2g/m 
by using Eq. (3) and calculated values of pressure and effective stress in the second wave. 

It can be seen from Fig. 1 that the evolution of a fast wave at high frequencies can 
be significantly influenced by viscoelastic forces due to expulsion of fluid near points 
of contact of the solid particles during their deformation. Line 2 in Fig. 5 shows the 
character of evolution of the leading edge of a fast wave in an oil-saturated porous medium 
when the parameters of the medium correspond to Fig. 2b. Appreciable flattening of the lead- 
ing edge of the wave is seen for short periods of time. Line 1 shows the calculation with- 
out allowance for viscoelastic forces, while line 3 shows the results obtained with the in- 
troduction of the complex modulus H* by (7) with ~ = 4-I0 s. It is evident from a comparison 
of the experimental wave profile with the theoretical profile that viscoelastic effects have 
a greater influence on the evolution of a fast wave than does interphase friction. This 
should be considered in the calculations. It should be noted that the effect is quite small 
for the test data shown in Fig. 4a. Here, viscoelastic effects will be significant only in 
the cases of signals of considerably shorter duration or in the case of greater distances. 
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The amplitudes of the fast and slow waves at the entry point are determined by the con- 
ditions of generation of the compression waves and the parameters of the medium. Figure 
6 shows results of experiments with regard to the dependence of the amplitude of the fast 
waves at the entry point on the ratio KB/K 2 with the "fluid" piston boundary condition: 1 
corresponds to a porous medium saturated with gasoline, 2 corresponds to the same with kero~ 
sene, and 3 and 4 correspond to the same with oil. Also shown are results of calculations 
for all three types of fluids, which lie close to curve 5. The calculated results show 
that the amplitude of the fast wave, under the conditions of the experiments conducted 
here, depends only slightly on the viscosity and density of the fluid and is determined by 
the value of KB/K 2 for the given skeleton material. 

Figure 7 shows results on the dependence of the velocity of fast v I and slow v 2 waves 
on their amplitudes. Here, c 2 is the speed of sound in the fluid, P0 = 0.i MPa is the initial 
pressure in the medium; a: i) test results for a porous medium saturated with gasoline; 
2) kerosene; 3) oil; 4) calculation for gasoline; 5) kerosene; 6) oil; b: I) test data for 
gasoline; 2) kerosene; 3) calculation for gasoline; 4) kerosene. In the investigated range 
of wave amplitudes, the velocities of the fast and slow waves are independent of their ampli- 
tudes. This confirms the correctness of using linear system (4) to analyze the process of 
wave propagation. 

It was shown as a result of the completed tests that in bulk sand saturated with fluid~ 
in the case where the bulk modulus elasticity of the skeleton is less than that of the fluid, 
a single longitudinal wave with the velocity vx is propagated. This velocity is close to 
the speed of sound in the fluid c 2 = (K~/p2) I/2. Figures 8a and 9a show the character of 
evolution of bell-shaped compression waves over the length x of the working section. After 
the initial signal at x = 0, we took the profile of the compression wave in the porous 
medium 0.012 m from the point of entry. The fluid saturating the medium was oil with P2 = 
0.86"103 kg/m ~, K 2 = 1.25"109 N/m 2, v = 32.4-I0 -6 m2/sec. The material of the solid skeleton 
had the parameters Pl = 2.56"103 kg/m 3, Kz = 40"109 N/m 2- The parameters of the porous 
skeleton in Fig. 8: K B = 0.i-I0 s N/m 2, m = 0.33, k 0 = 24-10 -12 m2; in Fig. 9: K B = 0.5.10 s 
N/m 2, m = 0.3, k 0 = 16"I0 -12 m 2. It is evident that the amplitude of the compression wave 
decreases along x and that its period increases. The rate of decay of amplitude increases 
with an increase in K B. 

Figures 8b and 9b (line i) show results of calculation of the evolution of the pressure 
perturbations. The parameters of the perturbations and the medium in the calculations 
correspond to the conditions of the tests. The initial bell-shaped signal was approximated 

117 



72 I c , . r -  " . i i .T - - - - q  . . . . . . . .  T . . . . . . . .  

- o -  - o o o o - ' - - o ' -  - , ' - ~ -  ~ ~ .  _ _ _ _  s . _ , . _  J 
r - - ~ ' - * - " - *  . . . .  r - " ~  o,4 ? u ' t ~ - ' o ~ - ~ ' - o ' 7 - ' " - b ~  . . . .  | 

, , 2  ~ o p I -  "r "~ 4 
L , , | , .~___~T t [ i [ ' - - .  I 0 ~  ~ 

o 2 6 r '~P, olpo o 2 ,~ 6 4 0 3 0  

a b 

!2,A 

1 
f ' l O  - 4  s e c  

L___  I 

Fig. 7 

a b 

~ 4  

r sec 
[ _ _ - - - _ _ J  

Fig. 8 Fig. 9 

in the calculations by the relation ~p0(t) = aP0 exp(-(2t/6)2) �9 The added mass of the fluid 
was calculated from the formulas [6] ~ = i + (i - m)/2m. 

The calculated results confirmed that, at K B < K 2, only one longitudinal wave - a fast 
wave (using the terminology in [i]) - is propagated in the fluid-saturated porous medium. 
The second, slow wave decays very rapidly in the calculations and is not observed in experi- 
ments. Comparison of the calculated and experimental results in Figs. 8 and 9 showed that 
the fast wave decays more rapidly in the tests than in the calulations. Here, an increase 
in K B in the tests leads to an increase in attenuation of the wave, while in the calculations 
it leads to a decrease in attenuation. This means that, in contrast to consolidated porous 
media, in bulk media an additional mechanism besides interphase friction is operative. In 
the propagation of compression waves in saturated porous media, particle displacements and 
friction losses between particles are possible. These events lead to the generation of 
forces associated with "dry" friction and, at low frequencies, such forces predominate over 
forces associated with interphase friction [12]. "Dry" friction can be allowed for in the 
case of harmonic waves by introducing the complex bulk modulus of elasticity K B = K B + 
iKBI and complex shear modulus of elasticity p = g + ipr of the solid skeleton [12] in 
place of the real values K B and p in linear system (4); KBI/KB and DI/D increase slightly 
with an increase in skeleton strain el and change within the range 0.03-0.07 for i0 -5 < e i < 
10 -4 [13]. Comparison of the experimental results and the results calculated with the com- 
plex moduli K B and ~ (line 2 in Figs. 8 and 9) showed that they agree well in regard to 
attenuation at KBI/K B= 0.5 and ~i/g = 0.5. For the test data in Figs. 8 and 9, e I ~ 10 -2 . 
This is responsible for an increase in KBI/KB and ~I/D compared to the results [13] ob- 
tained for smaller e I. The strains were evaluated from (3) e I = Ap0m/K 2. 

With a wave-velocity measurement error of 5%, the measured values of wave velocity 
v I = 1360 and 1590 m/sec (Figs. 8 and 9) agree with the calculated values. It should be 
noted that the introduction of the complex moduli has almost no effect on wave velocity. 
Comparison of the test results and calculations for ~ = I on the one hand, and the results 
calculated from the expression in [6] on the other hand, showed that ~ has no effect on the 
propagation and rate of decay of a fast wave. 
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Analysis of the experimental data in Figs. 8 and 9 showed that the attenuation of com- 
pression waves in a bulk porous medium is determined mainly by the presence of "dry" fric- 
tion. For low frequencies m < ~c = mv/20k0 and at K B <K 2 << KI, if we replace the real 
values of the moduli K B and p by their complex analogs K B = K B + iKBI and p = p + i~I and 
consider "dry" friction between particles of the porous medium, then from (5) we obtain an 
expression for the velocity and attenuation factor of harmonic waves v I = (H/p) I/2, k I = 
in (Ap/Ap0)/x = ~v + ~I, where Ap is the amplitude of the wave at the distance x from the 
point of entry to the medium. The coefficient ~v = k0m2(P - P2)2/(2VvlPP2 ) describes dis- 

sipative losses to interphase friction, while ~I = (KBI + 4Pl/3)m/(2v• + KB + 4p/3)) 
accounts for "dry" friction between particles of the porous medium. 

, . pp2v(Km + 4~s/3) 
For 10W ftequeficie~ ~<<~(p_ p2)Z(K2/m+KB+4~/3) , we can ignore dissipation at the phase 

boundary and k I = ~I ~ m- The linearity of the attenuation factor with respect to fre- 
quency can be used to generalize data on the attenuation of pressure pulses by changing over 
from the characteristic pulse width 6 to its characteristic frequency ~, = 1/6. 

Figure i0 shows experimental results on the attenuation of bell-shaped compression 
waves in bulk sand saturated with fluid with K B = 0.5-109 N/m 2, m = 0.3, k 0 = 16.1.0 -12 m 2 

for different 6, Ap0, and v. Here, a = (KBI + 4~i/3)/(2v16(K2/m + K B + 4p/3)). Curves 1 
and 2 were obtained for sand saturated with kerosene with 02 = 0.79"103 kg/m 3, ~ = !.54"i0-6 
m2/sec, K 2 = 0.9"109 N/m 2, while curves 3, 4 were obtained for oil with P2 = 0.86"i03 kg/m3, 
v = 32.4.10 -~ m2/sec, K 2 = 1.25"109 N/m2; for curves 1 and 3, 6 = (45-55)'10 -~ sec, Ap0 = 

7-25 MPa, while for curves 2 and 3, 6 = (80-100)'10 -G sec, Ap0 = 2-5 MPa. 

The results of calculatons of wave amplitudes at different distances x from the point 
of entry to the porous medium are shown by lines 5-8 in Fig. i0. The results correspond 
to the test conditions and allow for both dry friction (KBI = 0.5 KB, ~I = 0.5 ~) and dis- 
sipation at the phase boundary. Lines 5 and 6 show results for a porous medium saturated 
with kerosene, and 7 and 8 show results in the case of oil as the fluid. Here, ~ = 48-10 -6 
sec for 5 and 7 and i0 -4 for 6 and 8. the test data is satisfactorily generalized by the 
theoretical relations. In the dimensionless coordinates used here, the two sets of results 
nearly coincide for different parameters of the perturbations and medium. The agreement 
between the results can be attributed to the slight effect of dissipation at the phase bound- 
ary on decay of the wave amplitude. Calculated results, without allowance for dry friction 
KBI = ~I = 0 for the same parameters lie within region 9 and show considerably less attenu- 
ation than the experiments. The deviation of the theoretical relations 5-8 from the 
straight lines in the given coordinates is connected with an increase in wavelength over 
the length of the working section (Figs. 8 and 9), which leads to a decrease in ~, and in the 
rate of wave decay during evolution. We took constant values for the imaginary moduli in 

i19 



the calculations throughout the investigated range of wave amplitudes Ap0 = 2-25 MPa: KBI = 
0.5 KB, DI = 0.5 ~. In reality, KBI/K B and DI/~ increase slightly with an increase in the 
wave amplitude due to an increase in skeleton strain e I [13]. Allowance for KBI(AP0) and 
~l(Ap0) leads to convergence of the test data for waves of large I, 3 and small 2, 4 ampli- 
tude and theoretical relations 578. 

Figure ii shows test results on the attenuation of compression waves in a porous bulk 
medium with K B = 0.1"109 N/m 2 for 6 z 48"10 -6 and 10 -4 sec (points I and 2) at m = 0.33, 
k0 = 24"10 -12 m 2, andv = 32.4.10 -6 sec. The medium is saturated with oil. Lines 3 and 4 show 
calculated results with allowance for dry friction, While 5 and 6 show the same without 
allowance for dry friction. Calculated curves 3 and 5 correspond to 6 = 48"10 -6 sec, while 
4 and 6 correspond to 6 = 10 -4 sec. The role of dissipative processes at the phase boundary 
increases with a decrease in KB, which leads to greater divergence of curves 3 and 4 in the dimen- 
sionless coordinates considering only the role of dry friction in Fig. II. 

Figure 12 compares experimental and theoretical results on the dependence of wave 
velocity on the initial intensity in sand saturated with oil with K B = 0.5"109 N/m 2. The 
parameters of the medium correspond to the parameters in Fig. 10. Here, P0 is the initial 
pressure in the fluid, 1 shows experimental results, and 2 shows results calculated with 
KBI/K B = 0.5 and DI/D = 0.5. The test data on velocity are independent of the amplitude of 
the initial signal and agree well with the theoretical value. 

Thus, we have confirmed the correctness of using the linear equations in [1-3] and the 
method of calculation to describe the evolution of a signal in the range of wave amplitudes 
investigated above. 

We thank Z. M. Orenbakh for writing the program for numerical realizationdf the method 
of rapid Fourier transformation. 
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